organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(6-Chloropyridin-3-ylmethyl)-3-phenyl-1H-pyrazole-5-carboxylic acid

Zheng Tang,^a Zheng Tang,^b Xiao-Ling Ding,^c Wen-Liang Dong^d and Bao-Xiang Zhao^a*

^aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100. People's Republic of China. ^bSubmarine College of Nary, Oingdao 266021. People's Republic of China, ^cCollege of Advanced Professional Technology, Qingdao University, Qingdao 266061, People's Republic of China, and ^dSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China

Correspondence e-mail: sduzhao@hotmail.com

Received 20 June 2007; accepted 25 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.044; wR factor = 0.095; data-to-parameter ratio = 16.4.

In the title compound, C₁₆H₁₂ClN₃O₂, the pyrazole ring makes dihedral angles of 4.6 (1) and 67.1 (1) $^{\circ}$ with the phenyl and pyridine rings, respectively. The structure displays O-H···N hydrogen bonding.

Related literature

For related literature, see: Cottineau et al. (2002); Finn et al. (2003); Jia et al. (2004); Wei et al. (2006); Xia et al. (2007).

Experimental

Crystal data C16H12CIN3O2 $M_r = 313.74$ Orthorhombic, Fdd2

a = 20.5430	(5) Å
b = 54.5902	(15) Å
c = 5.11340	(10) Å

V = 5734.4 (2) Å³ 7 - 16Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD area-detector	11476 measured reflections
diffractometer	3276 independent reflections
Absorption correction: multi-scan	2193 reflections with $I > 2\sigma(I)$
(APEX2; Bruker, 2005)	$R_{\rm int} = 0.058$
$T_{\min} = 0.931, \ T_{\max} = 0.989$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.095$	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.01	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
3276 reflections	Absolute structure: Flack (1983),
200 parameters	1442 Friedel pairs
1 restraint	Flack parameter: 0.05 (7)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1-H1A\cdots N3^{i}$	0.82	1.98	2.794 (3)	176
Symmetry code: (i) $x + \frac{1}{2}$	$\frac{1}{4}$, $-v + \frac{1}{4}$, $z + \frac{5}{4}$			

 $\mu = 0.28 \text{ mm}^{-1}$ T = 293 (2) K

 $0.26 \times 0.14 \times 0.04 \text{ mm}$

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This study was supported by the Natural Science Foundation of Shandong Province (grant No. Y2005B12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2243).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. Lett. 12, 2105-2108.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Finn, J., Mattia, K., Morytko, M., Ram, S., Yang, Y., Wu, X., Mak, E., Gallant, P. & Keith, D. (2003). Bioorg. Med. Chem. Lett. 13, 2231-2234.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jia, Z. J., Wu, Y., Huang, W., Zhang, P., Song, Y., Woolfrey, J., Sinha, U., Arfsten, A. E., Edwards, S. T., Hutchaleelaha, A., Hollennbach, S. J., Lambing, J. L., Scarborough, R. M. & Zhu, B. Y. (2004). Bioorg. Med. Chem. Lett. 14, 1229-1234.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Wei, F., Zhao, B. X., Huang, B., Zhang, L., Sun, C. H., Dong, W. L., Shin, D. S. & Miao, J. Y. (2006). Bioorg. Med. Chem. Lett. 16, 6342-6347.
- Xia, Y., Ding, X.-L., Ge, Y.-Q., Liu, L.-D. & Zhao, B.-X. (2007). Acta Cryst. E63, o394-o395.

supplementary materials

Acta Cryst. (2007). E63, o3348 [doi:10.1107/S1600536807030954]

1-(6-Chloropyridin-3-ylmethyl)-3-phenyl-1H-pyrazole-5-carboxylic acid

Z. Tang, Z. Tang, X.-L. Ding, W.-L. Dong and B.-X. Zhao

Comment

Pyrazole framework plays an essential role in biologically active compounds. Many pyrazole derivatives are known to exhibit a wide range of biological properties such as anticoagulant (Jia *et al.*, 2004), antipyretic, antibacterial, hypoglycaemic, antihyperglycaemic, analgesic, anti-inflammatory, sedative-hypnotic (Cottineau *et al.*, 2002; Finn *et al.*, 2003), and antitumour (Wei *et al.*, 2006) activities. We report here the crystal structure of the title compound, (I).

Experimental

A mixture of ethyl 1-((6-chloropyridin-3-yl)methyl)-3-phenyl-1*H*-pyrazole-5-carboxylate (0.01 mol) that was synthesized according to the literature procedure (Xia *et al.*, 2007) and potassium hydroxide (0.02 mol) in ethanol (40 ml) was heated to reflux for 1 h. The solvent was removed under reduced pressure and the residue was dissolved in water and acidified with hydrochloric acid (10%). The precipitate was filtered and dried to give a white solid (yield 86%). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in acetone at room temperature for 6 d.

Refinement

All H atoms were placed at geometrically calculated positions and allowed to ride with C—H = 0.97 Å (for CH₂ groups), and O—H = 0.82 Å; their isotropic displacement parameters were set to 1.2 times (CH₂ groups) or 1.5 times (O—H groups) the equivalent displacement parameter of their parent atoms.

Figures

Fig. 1. The molecular strure of (I), showing displacement ellipsoids drawn at 50% probability level.

Fig. 2. Packing view of (I), shown down the c axis. Hydrogen bonds leading to columns units are drawn as dashed lines.

1-(6-Chloropyridin-3-ylmethyl)-3-phenyl-1*H*-pyrazole-5-carboxylic acid

Crystal data

C ₁₆ H ₁₂ ClN ₃ O ₂	$F_{000} = 2592$
$M_r = 313.74$	$D_{\rm x} = 1.454 {\rm Mg m}^{-3}$
Orthorhombic, <i>Fdd</i> 2	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: F 2 -2d	Cell parameters from 1585 reflections
a = 20.5430 (5) Å	$\theta = 2.5 - 21.4^{\circ}$
b = 54.5902 (15) Å	$\mu = 0.28 \text{ mm}^{-1}$
c = 5.11340 (10) Å	T = 293 (2) K
V = 5734.4 (2) Å ³	Plate, colourless
Z = 16	$0.26\times0.14\times0.04~mm$

Data collection

Bruker APEX2 CCD area-detector diffractometer	3276 independent reflections
Radiation source: fine-focus sealed tube	2193 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.058$
T = 293(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (APEX2; Bruker, 2005)	$h = -25 \rightarrow 26$
$T_{\min} = 0.931, T_{\max} = 0.989$	$k = -67 \rightarrow 70$
11476 measured reflections	$l = -6 \rightarrow 6$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.044$	$w = 1/[\sigma^2(F_o^2) + (0.0367P)^2 + 0.3657P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.095$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
3276 reflections	$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$
200 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.05 (7)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y C1 0.59781 (18) 0.0630 (9) 0.25213 (5) -0.3934(7)H10.5909 0.2643 -0.51780.076* C2 0.65305 (18) 0.25237 (6) 0.0635 (9) -0.2456(7)H2 0.2646 0.076* 0.6840 -0.2708C3 0.66326 (15) 0.23443 (5) -0.0576(6)0.0544 (8) H3 0.7009 0.2348 0.0437 0.065* C4 -0.0195(5)0.61805 (12) 0.21602 (5) 0.0383 (6) C5 0.56229 (13) 0.21617 (5) -0.1724(6)0.0500(7) Н5 0.2040 0.060* 0.5310 -0.1489C6 0.55259 (15) 0.23404 (6) -0.3588(6)0.0618 (9) 0.074* H6 0.5152 0.2338 -0.4612 C7 0.62922 (12) 0.19686 (4) 0.1782 (5) 0.0348 (6) C8 0.67929 (11) 0.19464 (4) 0.3623 (5) 0.0367 (6) H8 0.044* 0.7142 0.2052 0.3862 C9 0.66637(11) 0.17366 (4) 0.5004(5)0.0332 (6) C10 0.70235 (12) 0.16293 (5) 0.7217 (5) 0.0359 (6) C11 0.57428 (11) 0.14209 (4) 0.4677 (6) 0.0380(6) H11A 0.1450 0.4422 0.046* 0.5281 H11B 0.5811 0.1386 0.6517 0.046* C12 0.11997 (4) 0.59414 (11) 0.3095 (5) 0.0350(6) C13 0.64818 (12) 0.10619 (4) 0.3792 (6) 0.0416(7) H13 0.6730 0.1106 0.5238 0.050* C14 0.66494 (13) 0.08599 (5) 0.2343 (6) 0.0467 (7) H14 0.7012 0.0766 0.2769 0.056* C15 0.55921 (11) 0.11244 (4) 0.0930 (5) 0.0377 (6) H15 0.5232 0.1216 0.0431 0.045* C16 0.62635 (13) 0.08010 (5) 0.0246 (5) 0.0421 (7) Cl1 0.64398 (4) 0.054295 (13) -0.16079 (18) 0.0733 (3) N1 0.58700 (9) 0.17805 (4) 0.2025 (4) 0.0373 (5) N2 0.60997 (9) 0.16434 (3) 0.3997 (4) 0.0357 (5) N3 0.57445 (10) 0.09264 (4) -0.0486(4)0.0415 (6) 01 0.75219 (8) 0.17705 (3) 0.7891 (4) 0.0445(5)H1A 0.7717 0.1708 0.9117 0.067*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

02	0.69003 (8)	0.14364 (3)	0.8283 ((4) 0.0	0480 (5)		
Atomic displacen	Atomic displacement parameters $(Å^2)$						
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}	
C1	0.091 (2)	0.0468 (17)	0.051 (2)	0.0154 (17)	0.009 (2)	0.0181 (18)	
C2	0.088 (2)	0.0406 (16)	0.062 (2)	-0.0096 (16)	0.008 (2)	0.0083 (16)	
C3	0.0670 (19)	0.0435 (16)	0.053 (2)	-0.0087 (15)	-0.0061 (15)	0.0055 (15)	
C4	0.0491 (16)	0.0328 (13)	0.0330 (15)	0.0067 (12)	0.0070 (13)	-0.0013 (12)	
C5	0.0477 (16)	0.0501 (16)	0.0523 (19)	0.0053 (13)	-0.0031 (15)	0.0144 (16)	
C6	0.0642 (19)	0.067 (2)	0.054 (2)	0.0120 (17)	-0.0065 (16)	0.0159 (19)	
C7	0.0401 (14)	0.0307 (13)	0.0337 (16)	0.0017 (11)	0.0022 (12)	-0.0031 (11)	
C8	0.0392 (14)	0.0322 (13)	0.0386 (17)	-0.0012 (10)	0.0008 (13)	-0.0034 (13)	
C9	0.0344 (13)	0.0351 (13)	0.0300 (14)	0.0031 (11)	0.0007 (11)	-0.0010 (12)	
C10	0.0338 (14)	0.0411 (15)	0.0327 (14)	0.0051 (12)	0.0011 (11)	-0.0048 (13)	
C11	0.0324 (13)	0.0408 (15)	0.0409 (16)	-0.0010 (11)	0.0017 (12)	0.0065 (13)	
C12	0.0323 (12)	0.0349 (13)	0.0379 (15)	-0.0066 (11)	-0.0018 (12)	0.0110 (13)	
C13	0.0380 (14)	0.0449 (15)	0.0420 (18)	-0.0028 (12)	-0.0123 (13)	0.0027 (14)	
C14	0.0486 (16)	0.0434 (15)	0.0481 (18)	0.0103 (13)	-0.0116 (15)	0.0010 (14)	
C15	0.0334 (13)	0.0412 (14)	0.0386 (16)	0.0004 (11)	-0.0016 (13)	0.0139 (14)	
C16	0.0533 (17)	0.0368 (14)	0.0361 (17)	0.0018 (13)	-0.0048 (13)	0.0031 (12)	
Cl1	0.1066 (7)	0.0495 (4)	0.0638 (6)	0.0242 (4)	-0.0260 (5)	-0.0104 (4)	
N1	0.0408 (12)	0.0361 (11)	0.0350 (12)	0.0030 (10)	-0.0042 (10)	0.0054 (10)	
N2	0.0351 (11)	0.0342 (11)	0.0376 (14)	-0.0008 (9)	-0.0044 (10)	0.0044 (10)	
N3	0.0405 (12)	0.0432 (12)	0.0408 (14)	-0.0010 (10)	-0.0076 (10)	0.0066 (12)	
01	0.0438 (10)	0.0461 (10)	0.0436 (13)	0.0002 (9)	-0.0131 (9)	-0.0006 (9)	
02	0.0544 (11)	0.0449 (10)	0.0446 (12)	-0.0011 (9)	-0.0081 (10)	0.0098 (10)	

Geometric parameters (Å, °)

C1—C2	1.363 (5)	C10—O2	1.212 (3)
C1—C6	1.367 (4)	C10—O1	1.327 (3)
C1—H1	0.9300	C11—N2	1.460 (3)
C2—C3	1.388 (4)	C11—C12	1.510(3)
С2—Н2	0.9300	C11—H11A	0.9700
C3—C4	1.382 (3)	C11—H11B	0.9700
С3—Н3	0.9300	C12—C15	1.382 (4)
C4—C5	1.387 (4)	C12—C13	1.388 (3)
C4—C7	1.473 (3)	C13—C14	1.373 (4)
C5—C6	1.378 (4)	С13—Н13	0.9300
С5—Н5	0.9300	C14—C16	1.372 (4)
С6—Н6	0.9300	C14—H14	0.9300
C7—N1	1.350 (3)	C15—N3	1.338 (3)
С7—С8	1.400 (3)	C15—H15	0.9300
С8—С9	1.371 (3)	C16—N3	1.321 (3)
С8—Н8	0.9300	C16—C11	1.736 (3)
C9—N2	1.366 (3)	N1—N2	1.342 (3)
C9—C10	1.473 (4)	O1—H1A	0.8200

C2—C1—C6	120.0 (3)	O1—C10—C9	110.8 (2)
C2—C1—H1	120.0	N2—C11—C12	113.7 (2)
С6—С1—Н1	120.0	N2—C11—H11A	108.8
C1—C2—C3	120.2 (3)	С12—С11—Н11А	108.8
С1—С2—Н2	119.9	N2—C11—H11B	108.8
С3—С2—Н2	119.9	C12—C11—H11B	108.8
C4—C3—C2	120.6 (3)	H11A—C11—H11B	107.7
С4—С3—Н3	119.7	C15—C12—C13	117.4 (3)
С2—С3—Н3	119.7	C15—C12—C11	121.8 (2)
C3—C4—C5	118.1 (3)	C13—C12—C11	120.8 (2)
C3—C4—C7	120.6 (2)	C14—C13—C12	119.8 (3)
C5—C4—C7	121.3 (2)	C14—C13—H13	120.1
C6—C5—C4	120.9 (3)	С12—С13—Н13	120.1
С6—С5—Н5	119.6	C16—C14—C13	117.7 (2)
С4—С5—Н5	119.6	C16—C14—H14	121.1
C1—C6—C5	120.2 (3)	C13—C14—H14	121.1
С1—С6—Н6	119.9	N3—C15—C12	123.5 (2)
С5—С6—Н6	119.9	N3—C15—H15	118.2
N1—C7—C8	110.2 (2)	C12—C15—H15	118.2
N1—C7—C4	120.2 (2)	N3—C16—C14	124.5 (3)
C8—C7—C4	129.6 (2)	N3—C16—Cl1	115.7 (2)
C9—C8—C7	106.0 (2)	C14—C16—Cl1	119.8 (2)
С9—С8—Н8	127.0	N2—N1—C7	105.52 (19)
С7—С8—Н8	127.0	N1—N2—C9	111.93 (19)
N2—C9—C8	106.3 (2)	N1—N2—C11	117.81 (19)
N2—C9—C10	124.5 (2)	C9—N2—C11	130.2 (2)
C8—C9—C10	129.1 (2)	C16—N3—C15	117.0 (2)
O2—C10—O1	123.3 (2)	C10—O1—H1A	109.5
O2—C10—C9	125.9 (2)		
C6—C1—C2—C3	-0.7 (5)	N2-C11-C12-C13	83.1 (3)
C1—C2—C3—C4	0.6 (5)	C15-C12-C13-C14	0.1 (4)
C2—C3—C4—C5	-0.6 (4)	C11—C12—C13—C14	179.3 (2)
C2—C3—C4—C7	179.4 (3)	C12-C13-C14-C16	-0.6 (4)
C3—C4—C5—C6	0.6 (4)	C13-C12-C15-N3	0.7 (4)
C7—C4—C5—C6	-179.3 (2)	C11-C12-C15-N3	-178.5 (2)
C2—C1—C6—C5	0.8 (5)	C13-C14-C16-N3	0.5 (4)
C4—C5—C6—C1	-0.7 (5)	C13-C14-C16-Cl1	-178.4 (2)
C3—C4—C7—N1	-175.6 (2)	C8—C7—N1—N2	0.4 (3)
C5—C4—C7—N1	4.3 (4)	C4—C7—N1—N2	-178.8 (2)
C3—C4—C7—C8	5.4 (4)	C7—N1—N2—C9	-0.9 (3)
C5—C4—C7—C8	-174.7 (3)	C7—N1—N2—C11	-178.79 (19)
N1—C7—C8—C9	0.2 (3)	C8—C9—N2—N1	1.0 (3)
C4—C7—C8—C9	179.3 (2)	C10—C9—N2—N1	178.7 (2)
C7—C8—C9—N2	-0.7 (3)	C8—C9—N2—C11	178.6 (2)
C7—C8—C9—C10	-178.3 (2)	C10-C9-N2-C11	-3.7 (4)
N2-C9-C10-O2	6.5 (4)	C12—C11—N2—N1	86.5 (3)
C8—C9—C10—O2	-176.4 (3)	C12—C11—N2—C9	-90.9 (3)
N2—C9—C10—O1	-174.9 (2)	C14—C16—N3—C15	0.2 (4)
C8—C9—C10—O1	2.2 (3)	Cl1—C16—N3—C15	179.12 (18)

supplementary materials

N2-C11-C12-C15	-97.8 (3)	C12—C15—N3—C16		-0.8 (4)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1A···N3 ⁱ	0.82	1.98	2.794 (3)	176
Symmetry codes: (i) $x+1/4$, $-y+1/4$, $z+5/2$	/4.			

Fig. 2

